

<u>지성화¹, 홍보람¹, 김현효¹, 방선우², 신채호², 김효진³</u> ¹ ㈜일신오토클레이브, 대전시 유성구 탑립동 835, 34026 2 충북대학교 화학공학과, 충북 청주시 서원구 충대로 1, 28644 ³ 충남대학교 신소재공학과, 대전시 유성구 대학로 99, 34134

1. Introduction

플라즈마 시설 플라즈마 + 촉매연소

- Metallic oxide nano-catalyst have received intensive interest in recent years due to their potential applications in various fields, such as in petro-chemistry, motor industry, boiler, air pollution, environmental field

> Objectives of This Study

- Synthesis of uniform a metallic oxide catalyst nanoparticles using a high pressure homogenizer without any dispersing agent.
- Control of the size of the metallic oxide nanoparticles.
- Analysis of property a metallic oxide catalyst nanoparticles

High Energy

(Nucleation &

Crystal Growth)

SULUX

- **Cavitational Collapse**
 - intense local heating(~5000 K)
 - high pressures(~1000 atm)
 - enormous heating and cooling rates(10⁻⁹ K/sec)

Advantages

- Highly dispersion by high energy, Short process time

2. Experimental & Results

> XRD Patterns

Reaction Temp.: R.T Stirring Time: 5 min

- High pressure homogenization in a solution during the chemical reaction may accelerate the rate of the reaction and the crystallization may be possible at low temperature.

Pre-sintering process

Post-sintering process

- The XRD pattern of before and after sintering sample showed diffraction peaks from the $Cu_{1.5}Mn_{1.5}O_4$.

- All samples synthesized uniform powders showed the same peak of X-ray diffraction pattern.

3. Results & Discussion

> SEM Images

> Property of nano-catalyst particle

	Average Particle Size (nm)	Specific surface area (m ² /g)	phase _	Catalystic activity (CO oxidation)	
				T _{50%}	T _{85%}
0 Pass	7.7	204.0	-	55.5	80.8
1 Pass	9.8	185.7	spherical	98.0	158.7
3 Passes	9.2	190.8	spherical	91.6	120.5
5 Passes	8.5	210.2	spherical	72.7	98.1
7 Passes	8.0	222.1	spherical	45.1	68.2

> Catalystic activity

As the number of nozzle passes increases through 1 to 7 passes at 1500bar sample, the specific surface area increases.

Spherical catalyst nanoparticles were obtained for 1 to 7 passes at 1500 bar.

4. Conclusion

> We have synthesized uniform metallic oxide nano-catalyst using the high pressure homogenizer without dispersing agent and oxidant.

> The X-ray diffraction patterns showed that all the samples had $Cu_{1.5}Mn_{1.5}O_4$ x-ray peaks.

> The average particle size decreased with increasing number of nozzle passes, and was the smallest at 8nm when passed through 7 passes.

> CO oxidation measurements revealed low temperature catalytic activity of the Cu-MnO₂ particles for 1 and 7 passes at 1500 bar.

>The uniform size, narrow distributions and metallic oxide particles of these catalyst nanoparticles demonstrated their suitability for use as petro-chemistry, motor, boiler, breathing mask, etc.

본 연구는 2015년도 산업통상자원부의 재원으로 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구과제입니다. (No. 20152910052789)