

Depolymerization of Chitosan Using a High Pressure Homogenizer

Jun Hee Choa, Taeyoung Kima, Yun Hye Yeona, Hyun Hyo Kima ^aDepartment of Research & Development, ILSHINAUTOCLAVE CO. #835 Taplipdong, Yuseonggu, Daejeon 305-510, Korea

Process	Method	Advantage	Disadvantage
Physical (Radiation)	Ultrasonic	No Waste (Acid/Alkali), No-residues	Long Time ProcessProcess Noise
	E-beam, γ-Ray	No Waste (Acid/Alkali), No-residues	Dangerous ProcessHigh Cost
Chemical	Acidic hydrolysis	High SolubilityHigh Efficiency of Depolymerization	Acid waste waterComplex Process
	Phosphorylation Sulfation	• Enhancement of Solubility and Functionality	• Low Efficiency
Biological	Enzymatic hydrolysis	Selective DecompositionHigh Efficiency of Depolymerization	High CostInefficiency

Pressure (bar)

Fluid velocity (m/sec)

2. Experimental

Plunger

Fluid outlet

- Natural Polymer: Chitosan Solvent: D.I Water
- Nano Disperser: NLM 100

Operating Pressure (bar)	200 – 1500
Max. Flow Rate (ml/min)	100
Pump System	Motor Driven
Dimension (mm)	300*450*300
Weight (kg)	30

Characterization

- Viscometer
- Gel Chromatograph
- FT-IR
- UV-Vis
- XRD
- Chitosan structure

Large Molecular Weight 1 %(w/v) Chitosan Solution **Low Molecular Weight** 1 %(w/v) Chitosan Solution

Hydraulic motive cylinder

Alternating

1000

442

313

High Molecular Weight Polymer

Depolymerization

2000

626

2500

1500

542

3. Results & Discussion

Viscosity(1 %(w/v) Chitosan)

→-500 bar --- 1000 bar 150 → 1500 bar Viscosity (cP) The Number of Passes

Molecular Weight

> FT-IR Spectrum

and stretch

> UV-Vis Spectrum

- HPH treatment produces significant changes in the viscosity and molecular weight of the chitosan solution.
- As the pressure and the number of pass increases, the polymer solution shows a significant decrease of viscosity and molecular weight.

 High Depolymerization Effect, Short Process Time and No Waste Water (Green Chemistry)

> XRD

- The intensity characteristics of the decrease peaks with increasing numbers of passes under high pressure homogenization.
- A decrease in crystallinity occurs due the destruction of the crystal structure of chitosan as a result of the cleavage of the glycosyl bonds

4. Conclusion

- > In the HPH process, the pressure and the number of passes increases make viscosity and molecular weight decrease without any acid/alkali solution (Green Chemistry).
- > The FT-IR spectra indicated no obvious modification of chemical structure of natural polymer before and after HPH treatment.
- > HPH has been shown to be a valid tool to reduce molecular weight of natural polymer (polysaccharides structure).

