Depolymerization of Chitosan Using a High Pressure Homogenizer

Jun Hee Choi, Tae Young Kim, Yun Hye Yeon, Hyun Hyo Kim

aDepartment of Research & Development, ILSHINAUTOCLAVE CO. #835 Taplipdong, Yuseonggu, Daejeon 305-510, Korea

1. Introduction

- Application of Chitosan
 - Cosmetics
 - Food
 - Textile

- Method of Depolymerization
 - Physical (Radiation)
 - Ultrasonic
 - E-beam, γ-Ray
 - Chemical
 - Acid hydrolysis
 - High Solubility
 - High Efficiency of Depolymerization
 - Sulfation
 - Enhancement of Solubility and Functionality
 - Low Efficiency
 - Biological
 - Enzymatic hydrolysis
 - Selective Decomposition
 - High Efficiency of Depolymerization
 - Cross-linking
 - High Cost
 - Low Efficiency

- High Pressure Homogenizer (HPH, Nano Disperser, ILSHIN AUTOCLAVE)

2. Experimental

- Characterization
 - Viscosity
 - Gel Chromatograph
 - FT-IR
 - XRD
 - Chitosan structure

- Operating Pressure (bar): 200 ~ 1500
- Max. Flow Rate (m/min): 100
- Pump System: Motor Driven
- Dimension (mm): 300*450*300
- Weight (kg): 30

3. Results & Discussion

- Viscosity (1% w/v Chitosan)
- Molecular Weight

- FT-IR Spectrum
- UV-Vis Spectrum

- XRD

- HPH treatment produces significant changes in the viscosity and molecular weight of the chitosan solution.
- As the pressure and number of passes increases, the polymer solution shows a significant decrease of viscosity and molecular weight.

4. Conclusion

- In the HPH process, the pressure and number of passes increases make viscosity and molecular weight decrease without any acid/alkali solution (Green Chemistry).
- The FT-IR spectra indicated no obvious modification of chemical structure of natural polymer before and after HPH treatment.
- HPH has been shown to be a valid tool to reduce molecular weight of natural polymer (polysaccharides structure).